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ABSTRACT

NL2SOL is a modular prograi~ for solving nonlinear least—squares problems

that incorporates a number of novel features • It maintains a secant approxi-

mation S to the second—order part of the least—squares Hessian and adaptively

decides when to use this approximation. S is “sized” before updating, som e-

thing which is similar to Oren—Luenberger scaling. The step choice algorith~

is based on minimizing a local quadratic model of the siam of squares function /

constrained to an elliptical trust region centered at the current approximate
-l

minimizer. This is accomplished using ideas discussed by Mor~, together with

a special module for assessing the quality of the step thus computed. These

and other ideas behind NL2SOL are discussed and its evolut ion and current im-

plementation are also described briefly.
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SIGNIFICANCE AND EXPLANATION

Mathematical models are frequently used in the physical and social sciences.

Such models usually contain parameters that may be chosen to make the model “fit”

some given data as well as possible in some specified sense. One sense often

specified is that of minimizing the sum of the squares of the errors that the

model makes on the given data , and when some of the parameters appear nonlinearly

in the model , determining the model parameters requires solving a nonlinear least—

squares problem. In various contexts , such as when the data contain large measure-

ment or transcription errors, one may wish to solve a nonlinear least squares

problem in which the model errors at the optimal parameters are large enough that

conventional nonlinear least—squares algorithms, such as the Gauss—Newton or

Levenberg—Marquardt methods, perform poorly. The present work describes an

approach that usually gives good performance whether or not the model errors are

large. In part this paper describes the computer L. -~de NL2SOL , which implements

the ideas presented here . ~IL2S3L also embodies many of the ideas presented by

John Dennis and Robert Schna~el in the short course that they gave in May , 1979

at the University of ~‘isco~~~n-Madison under spo’~sorship of the Mathematics

Research Center.

~~ ~~D_ i .~t ~~~~~~~~ ~~~~~~

The responsibility fbr the wording anJ vi~ws ~xpr~s~ ed in this ~escriptive summary
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AN ADAPTIVE NON LU EAR LE/ST-S~UARES ALGORITHM

- by

J.E. Dennis , Jr., David M. Gay , Roy E. Velsch

1. Introduction. 
-

This project began in order to meet a need for a nonlinear least-squares

algorithm which, in the large residual case, would be more reliablc. than the

Gauss—Newton or Levenberg—?.~ rquardt method (Dennis, 1977) and more efficient

than the secant or variable metric algorithi~s (Dennis & More , 197Th such as

the I~vidon-F1etcher—Powell method) which are intended for general funet~ on

minimization.

We have developed a satisfactory computer program called NL2SOL based

on ideas of Dennis and Welsch (1978] and our primary purpose here is to report

the details and to give some test results. On the other hand, we learned so

such during the development which seems likely to be applicable in the

develo pment of other algorithm s that we have chosen to expand our expos it ion

to include some of this exp~rience. 
-

In section 2 we set out the problem and the notation we intend to use.

Section 3 deals with our way of supplementing the classical Gauss—Newton

approximation to the least—squares Ressian by various analogs of the ~~vi don-

fletcher-Powell method. Section ~e briefly describes our interpretation of

the Oren-Luenburger (Oren , 1973] sizing strategy for this augmentation. In

-~ tion 5 we describe our adaptive quadratic modeling of the objective function.

Section 6 contains a discussion of the stopping criteria and covar ia.nee matrices

and section 7 contains test results. The NL2SOL Usage Sux~mtary is included as

ah appendix.

~~is work was supported in part by the Na~ional Science Foundation Grants DCR75-1Ol4,~~
MCS76—00324, and s0C76—l43ll to the National Bureau of Economic Research , Inc., an~
was sponsored in part by the United States Army under Contract No. DAAG29-75-C-0fl2- .
This work is based upon work supported by the National Science Foundation under
Grant No. MCS78—09525. 
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2. The Nonlinear Leest-~ cuares Problem.

There are good reasons for numerical analysts to. . - study least—squares

problems. In the first place, they are a computation of primary importance in

statistical data ar.alysis and hence in the social sciences , as well as in

the more traditional areas within the physical sciences. Thus a computer

algorithm able to deal etficientl~r with both sorts of data is widely

applicable.

ft.lthough applicability should always constitute sufficient justification

to tackle a problem, in this case there is also an opportunity for more far

reaching progress in numerical optimization. In order to be more specific ,

it will be useful to have a formal statement of the nonlinear least—squares

problem.

We adopt notation consistent with fitting a model to n pieces of

data using p parameters: Given R: ftP + ~n we wish to solve the unconstrained

minimization problem

(2.1) mm f(x) = ½ R(x) TR(x) = ½ t r .(x )2.
i~l

Notice that it J(x) ~ R’(x) = (a~r~(x)) then the gradient, of f is

(2.2) Vf (x) = J(x)TR(x )

and the Hessian of f is

(2.3) V2f(x) = J(x)TJ(x) + ~ r~(x)v
2r~(x).

i=l.

Since we are seeking a minimum of f , we wish to have f(x’) 0, an

obviously globa l minimum ; in the more rea1ist~ c case where 1’ is not atywbere

iii ’ 
- 
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near zero, we will be forced to terminate on small parameter changes or to

use some other convergence criteria (s~e Section 6). It is clear from (2.2)

that Vf(x ”) = 0 and R(x *) ~ P corresponds to R(X~ ) J_ C(J(x’)), the

column space of J(x’). Thus it is essential as the iteration proceeds that

C(J (xk)) be approximated very- well in the usual case where p < xi and

R (x )#O .

In addition to making a precise convergence test possible, having an

accurate Jacobian matrix means that a good approximation to a portion of

the Hessian is available as a byproduct of the gradient computation. In fact,

it is often possible to ignore the second order term ~r~(x)v
2r~(x) of the

Hessian altogether on the grounds that if the nonzero, resi duals are not of

a sort that reinforce their nonlinearity, J(x)TJ(x) is a sufficiently good

• Hessian approximation (Wedin, 1972, l9fla—c],(Dennis, 1977]. In the resulting

Gauss—Newton method, the “Newton step” from X
k 

is define d by the linear

system of equations -

(2..i~) ~(~~)T3(,~ )5 ~J(~~)TR(~~) 
-

Since (2.1~) is the system of normal equations for the linear least—

- squares problem -

(2.5) mm ½(J(xk )s + R(x
k

))T(J(xk)s +

it is bett er to obtain fro m a QR decomposition of J(xk) (see (colub , 1969]).

Ye cam view (2.5) as defining a quadratic model in x x~ + a of

the least—squares criterion function (2.1): 
• 

— -

Li - - _
~~~~~~~~~~~~~~~~~ - -- --— -—~~~~~~~~~~~~~~~ ..~~~~~ _-  - -~~~~~~~~~~~-



r -

~~~~~~ 

-

~~~~~~~~~~~~~~~~~~~~

-- -

~~~~~~

--
~~~~~~~~~~~~~~~~~

a 
—Il— 

-

(2.6) q~(x) ½ R(x
k

)TR(x k
) + (x_x~ )TJ(x ,~)TR (x ~ )

T T+ ½ (x-x,~) J(x
k

) J (x .~)(x-x ,~) . 
a

From (2.1), (2.2), (2.3) we see that the difference between this Gauss—

Newton model and the usual Newton model obtained from a quadratic Taylor

expansion around is just the term ½ (x_xk)
T(Zrj(xk)V

2
ri

(x
k
))(x_x

k
) .

The conceptual difference between these two models is interesting in

that it exposes some reasons for the deficiencies of the Gauss—Newton

algorithm. The Newton model is based on the assumption that f can be

adequately modeled by a quadratIc, while the Gauss—Newton model (2.6) is

shown by (2.5) to result from the stronger assumption that R can be

adequately- modeled by an at fine function.

3. An Au~~entation of the Gauss-Newton Hessian.

Our purpose in this section is to suggest a way to augment the Gauss—

Newton model (2.6) by adding en approximation to the difference between it

and the quadratic Taylor expansion to obtain

S T ~T T(3.1) q~(x) = ½R(xk
) R (x

k
) + (x_ x~j  J(x~) R(xk

)

• ½(x_ xk )T(J(xk )TJ(xk ) + Sk ]( x _x k).

We viii suggest an approximation rule for Sk which is simple, general

and geometric. The approach is to decide on a set of desirable characteristics

for the approximant and them to select Sk+l to be the nearest such feasible

point to Sk. The rationale is that every point in the feasible set incorporates

equally well the new information gained at and that taking the nearest

*

—

LJ-~ - .
~~~~

- 
- _ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _
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point (in a sense to be explained later) corresponds to destroying as little

of the information stored in as possible.

a Currently we begin with S
~ 

= 0, since this is both cheap and reasonable in

the sense tha~ q~ = q~. Suppose Sk 
Is available. First let us decide on the properti~~

should have. Remember that it is to approximate Erj(xk+l)V
2
r
1
(Xk+l) and so

it should obviously be symmetric. It is easy to find examples where the tern

to be approximated is indefinite, so we reject any restriction on the eigen—

values of Sk+l. Finally , we want to incorporate the new information about

the problem, 
~k+l 

and ~~~~ into Skil. The standard way to do this is to

ask the second order approximant to transform the current x—change into the

observed first order change, i.e., 
- 

-

~ 
Irj(xk+l)V

2
rI
(xk+i)~

x
k

(3 .2) . Erj (xk+l
)( Vr~

(x
k+1

) _Vr.(x
k

) )

T T
~k+1~k+1 - J

kRk+l 7k

It is perhaps worth noting in passing that we tested several choices for

Tk including the Broyden— Dennis ( Dennis , 1973] choice J~ .1H~,11- ~~~ —

and the Betts (1976) choice — — 
~k~k~~k 

Happily, (3.2), which

makes more use of the structure of the problem , -was the slight but clear winner.

In summary , we choose S0 = 0, Sk+l c J -=  (S: S = and S
~

Xk ~~~~
a . Our choice of Sk+l from J is made in analogy with the DFP method for

unconstrained minimization (Dennis & ~br , 1977]. Before giving the formula and

its properties, we review some useful notation.

If A is any real matrix, then the Frobenius norm of A is

IIA II~ (ZA~~)½. If B is any symmetric positive definite matrix, then

_ _ _ _ _ _ _ _ _
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B has a synrietric , positive definite square root , B½. Define

f l At 1 F ,B = l f B ~~AB~ 9l F. This weighted Frobenius norm is a natural

analog of the Frobenius norm for ~~~
- matrix when the standar d inner product

norm on the domain is replaced by I t  X f ‘B = (XTBx)½. The following theorem

• gives the update formulas as well as their defining properties. It is

just a restatement of Theorem 7.3 of (Dennis and Mord, 1977].

T}~EOBE M 3.1: Let ~~~~~ > 0. Then for any positive definite symmetric

matrix B for which H~x~ = v , 
-

mm - Sk t t p ,E for S ~~

is solved by

5k+1 Sk + ~~ 
— 5k~~~

h + v(yk - Sk~~
) 

—

£x~V -

-

—

In NL2SOL we compute Sk+l corresponding to v = — J~~1B~~,1 — J~Rk.

This corresponds to weighting the change by any positive definite symmetric

matrix that sends ax~ to a€k. Thus we hope the metric being used is not

too different frL~ that induced by the natural scaling of the problem.

i
i,

_ _ _ _ _ _ _ _  _ _ _ _   ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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14~ S i zf r ~ the }~essian Auc~mentation.

It is well known by now that the update methods do not generate

approximations that become arbitrarily accurate as the iteration proceeds .

On the other han d , we kno’.r that for zero residual problems, Sk should

ideally converge to zero and that if it does not at least become small in

those cases , then the augmented model (3.1) cannot hope to compete with (2.6),

• the Gauss—Newton model. -

The crux of the problem can be seen by observing that even if Bk.,1

• happened to be zero and even if y~ defined by (3.2) were used to make the

update to Sk, then S
~~l

AX
k = = 0, but S~~1 would be the seme as

on the orthogonal complement of {~x~,v}.

We use a straight forward modification of the Oren—Luenburger self scaling

technique (Oren , 1973]. The idea is to update tkSk~ 
rather than Sk, to get

• Sk, .
~
. The scaler is chosen to try to shift the spectrum of Sk in hopes

that the spectrum of will overlap that of the second order term we are

approximating. We could take the scalar to be

- 

~
X
~1k rm~ (Er i (

~ +l )v2r~ ~~~ ]~~1 ~~~~ ~ 
—1

_ _ _ _ _  - 

L J L J

We prefer to call this sizing, and since we are primarily concerned with Sk
being too large, we actually take

(14.i) min(~ ~~
k~k_ 

i~~~
1 . - 

- 

-

x
~SkAxk J

_ _ _ _ _ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _ _
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Whatever this strategy is called, notice that when 0, our

0, and so = 0 and Sk+l = 0. The use of sizing factor (~4.i) made

a significant difference in the performance of the algorithm. See Table IV.

5. Adaptive Quadratic Modeling .

In section 3 we noted that S0 
= 0, which means that the augmented model

(3~.l) is initially equal to the Gauss—Newton model (2.6). Tests have shown

G S
that often q~(x~~~) pred i.cts f(x.1~~1

) better than ~~(x~~1) for small k,

• so it seems useful to have some way to decide which model to use to determine

the step.

Betts (1976) also starts with S0 = 0 and takes Gauss—Newton steps

for at least p iterations and until bck 
is small enough to make it

likely that ~~~ is near x~. It seems therefore as though his aim is

to make a last f ew refining iterations based on the augmented Hessian. The

- heuristi.c we use in NL2SOL usually uses the augmented Hessian much sooner.

NL2SOL uses a model/trust region strategy to pick 
~
X
k
. The step is

of the form

(5.1) 
~~k ~~

1k + x~Y1 vf (xk ),

where Bk is the current Hessian approximation, Dk 
is a diagonal scilin€,

• matrix and Ak > 0 is chosen by the safeguarded Beinsch -iteration as in

• [Ibr d , 1978) , with the case of near singularity in + Bk handled as in

(Gay, 1979]. The important thing is the idea of having at xk a local quadratic

model of f and an estimate of a reg ion in which is trusted to

represent f. The next point Xk+1 is chosen to approximately minimize

________________________ - - - - ~~—- ---— — —--- —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -_ _
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in this region or to minimize in an approximation to this region. In

either case, the information gained about f at X
kIl is then used to

update the model and also to update the size or shape of the trust region.

We begin with the assumption that q~ holds globally. Since the

trust region revision is always based on the length of the step just taken,

this causes the radius to be set automatically by the initial Gauss—Newton

• step. This scheme often works well, but it can have problems. If the Gauss—

Newton step is too long, the trust region may have to be shrunk repeatedly with

. attendant evaluations of the residual function R to obtain an acceptable x1.

Iduch more serious is the possibility of overflow. The initial assumption of

global linearity can be overruled by assigning a small value to v(LMAX o) ,  the

maximum length allowed for the very first step attempted.

Figure 1 vii]. perhaps be helpful at this point . The ellipses represent

the contours of and the circle is the trust region — our picture assumes

the diagonal scaling matrix Dk 
to be the identity. The point Nk 

is the “Newton

st ep” or global minimum of the convex quadratic model and the curve s(r)

represents the locus of minimizers of q~ (x~ + a) constrained by

11 s 1 l 2 < r, 0< r < •. Complete details, based largely on (Mor~ , 1978] , can be

• found in [Gay, 1979], but we choose 6x~ = s(r) so that tt Dk~
xk lI 2 lies between

0.9 and 1.1 of the current trust radius. (The actual choice of Dk 
is discussed

in Section 7.) -

Since we were using this adaptive approach , it is not surprising that

we also thought of using the new information at X
k+i to select betw een

and for use in determinin g Xk+2 Our decision rule is rath er
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straightforward. Since S0 
0, we begin using the Gauss—Newton model.

After making a prospective step based on the currently preferred model

1 1 
- 

1
to obtain , say , x.~11, we compute Bk.,~ 

and f f1. If  
~~k+1 

> then

is discarded , but first •the other model q~ is evaluated at

to see how well it agrees with f~~3•
. If there is not sufficient agreement

between 
~k+l 

ana (i.e., if

1 1  i ½ 2 l  1
(5.2) lq~(x~~1) — f

k+1 ! < 2 Iq~(x.~~1) —

then we keep the original model preference, shrink the trust region, and

try again. We shrink the trust region radius by the factor suggested by

Fletcher (1971) and described by ?~.ore [1978 , p. 109]. If the agreement

between f~~1 and q~(x~~1) is sufficiently good, then we change our

model preference to q~ and comput e x
~+1 using the same trust region. It

is unacceptable, then the trust region is shrunk and we repeat the

above process on the smaller trust region with whichever model gave the

least function value, but now we no longer consider changing models while

- 
continuing to seek an acceptable x~41. -

If, say x~~1 yields an acceptable function decrease but

(5.3 ) f ( x~~1) — f(xk) ~~max{iO.[q~ (x~~1) —

, ~T, 1 •

- O•TS Vf
~
Xk
) 

~~k+l 
- Xk 4P }

• 
- and = ~~ — x~ was computed by (5.1) with > 0, then we deem it

worthwhile to try recomputing x~~1 with a lar ger t rust region radius

before accepting the step. Hence we double the radius and obtain, say,
1’ 1’x~ 1. If f (x ,,.,1) < f (x ,~~1) , then x~~1 replaces x~~1 and we again check

whether to double the radius. Otherwise we discard x~11 and accept
-
~~~~~ £S

‘i - ~~~

• 

— —•- - 
— 
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When an acceptable Xk+]. 
is found , and ~~ (x~~1

) are

compared to 
~k+l

• •Wc have found that it is best to retain the currently

preferred model if (5.2) holds with x~~1 = Xk.~ ., 
i.e., unless the other

model does a significantly better job of predicting the - new function value.

Once x~f] has been foun d , we decide what trust region radius to use

first when seeking Xk+2. The radius chosen has the form

where ~~ = ~~~~ x~. If f(x~~1
) — f(x~) > 0.l.(q

~
(xk+l) — f(x,~)], then ‘i

is Fletcher’s (1971] decrease factor; if either (5.3) holds with x~~1 =

or IIV
2
~~x~ -(Vf(x~~1) — vf(xk)]112 < 0.5flvf(x,~+1)!I, 

or

Ax
~

Vf(xk+l
) c O.75•ax~

Vf(x k ),  then ~ = 2; otherwise ~
j  = 1. This rule for

updating the radius is a modification of one described by Powell (1970].

6. Convergence Criteria and Covariance.

An important, sometimes difficult issue in practical computing is the

matter of deciding when to stop an iterative procedure . We have chosen to

include four convergence criteria in NL2SOL: tests for “cosine convergence”,

“variability convergence ”, “residual convergence”, and “X—convergence”.

• At any critical point of the sum of squares function (2.1), such as the

• desired minimizer x” , the residual vector B is orthogonal to all column s

of the Jacobian matrix J. I’bxeover, the angles - between B and the column s

• of J are independent of the scale of B and columns of J , so it is reasonable

to use a test based on these angles [Dennis , 1977]. Hence , we define

0 if R (x)rO - .

(6.1) COS~~X(x) —

- 
max{IJ.~j

(x) TR(x )t/ ( IIJ .,j(x) II2 ItR(x) II2 )

:IIJ,~~(x)II > 1 ~ i ~

otherwise,

_ _ _ _ _ _ _ _ _ _  - -
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where J.i (x) is the j .t~!. column of J(x), and we detect cosine convergence

at any iterate x.
~ 

for which cos
~

Ax(xk) is less than or equal to the cosine

convergence tolerance v(ccoNCR). By default, ~~ = 1O~~, so the COSK~.X is

scale invariant over a wide range of problems.

For statistical data analysis a different type of convergence criterion

is often appropriate. Since there is inherent variability in the data, it is

generally not useful to continue iterating when a candidate step si:(s
1 ,... ,5T’)~ t~’

is generated for which

(6.2) uzax ( l s iI Is.e. (4) }
I

~s sufficiently small. Here s.e.(4) denotes some estimate of the standard

error (square root of the variance) of the i~~ component of the current parameter

estimate x~ and so is a function of the statistical variability fr. the data.

• Sn alternative to (6.2) suggested by Pratt [1977] is to consider general

• linear combinations of the components of s, i.e.

(6.3) ma~{IL
?s(/(LTVkL)~~~L~ o} = (sTv;

1s)½,

where is a current estimate of the covariance matrix. • For s.e. (4)
~~~~~~~~ where is the i~~ standard unit vector, (6 .3) clearly dominates

(6.2), so we have chosen to include a test based on (6.3).
Our choice for was a~ç’, where is the current residual sum

- 
of squares divided by max(l ,n~p}, i.e.

(6.~i) 
~~~

aI 2f (xk
)/max(1,n_ p},

and is the current Hessian approximation, i.e. JTJ(xk) for the Gauss—

Newton model end J TJ (xk) + for the augmented model. Whenever a candidate 

-~~~ ~~~~~• 

_
~

_ _ _ _ _ _
~
-I__

~
_ _ 

•—~~~~~~~~~~ - -~~~~ -~~~
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step a is generated for wh ich 1!~ is positive defini te , we thus compute

(6~.5) - VARIAB (s) = S
T
HI.J~~

/Q
2
, •

and we detect variability convergence if VARIAB (s) does - not exceed the

variability convergence tolerance V(vco~cR).

For full Newton steps, i.e. s = =— H
~~

Vr(x
k
), (6.5) gives a quantity

closely related to the relative reduction, PBEDk~ 
in f(x

k
) that is still

possible according to the current model. Specifically, (6.5) and (6.I~) imply

• 

- 

PREDk = [_Vf(xk
)TsN — ~~

NT
~~sN],f(~~~)

P
~5N Hks

N/f(x,~)

- 
VARIAB(sN)/max{1,n_p}.

Thus at least for full Newton steps (the steps usually taken near x’) , the

variability convergence test checks whether the predicted relative reduction

still possible in the residual sum of squares is small. -

Zero—residual problems, those for which Rçx*) = 0, require special

consideration. Indeed, it can be shown that if J(x*) is nonsingular, then

lfm m t  COSMAX(x) , l/(p ½cond(J(x *) ) ]  > 0, where cond(J) is the condition
• I Ix -x 11 -.O

number of .1 (ratio of largest to smallest singular value). Moreover, for

— s(z) the Newton step from the Gauss—Newton model, i.e. s(x) — (J~J(x))~~J
TR(x) ,

it is easily seen that lim VABIAB(s(x)) = max{1,n—p). To handle this case,
z-4• x5

?~L2S0L detects residual convergence if f lR (x~ )~~ < V(RCONCR). We regret that

this convergence test must be sensitive to the scaling of B.

- ~~~~ • • - - ~~~~~~~~~~~~~~~~~ ——--.•- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • •~~~
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It is easy to specify convergence tolerances too strict for the precision

of the arithmetic being used. We have therefore included a fourth convergence

• test, the X—convergcnce test, which often works when overly tight tolerances

have been given for the other tests. This test is satisfied whenever a step

s is generated that yields a much smaller function decrease than expected

(i.e. f(xk+s) > f ( x~ ) + sTVf(~~)/lO) and the relative change that a causes

in Xk is small, i.e. EELDX(xk,xk
+s) < v(xc0NcR) , where

RELDX(y, z) = max Iz~_y~ I/ (Jz~ f + (~~I] .
• i

1~ny statistical inference procedures require an estimate of the covariance

matrix at the solution x~. NL2SOL provides three possibilities: 
-

(6.6) ~
2
i~ j

TJ 1.1 -

(6.7) ;2 ~
_l

(6.8) - 
• ;2 (3T3)

_l 
- 

. • 
-

w~iere 
2 is given by (6.i~) with = x”. When (6.6) or (6.7) is specified ,

a symmetric finite difference Hessian approximation H is obtained at the

solution, x5. If H is positive definite [or J is non—singular at x”

for (6.8)), the specified covariance matrix is computed. •

A detailed discussion of all three covariance forms is contained in [Bard ,197!&]. 
-

The second form (6.7) is based. on asympt~tic maximum likelihood theory and ~s perhaps

the most co=on form o~’ estimated covariance matrix. We feel that (6.6), the

default , is more useful for smaller sample sizes end in other cases where the

conditions necessary (Rao , 1965] for the asymptotic theory may be violated. The H

third form assumes that the residuals at the solution are small end is therefore

‘1’ often hi ghly suspect. •
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7. Tc~;t

We have run N~2SOL on a number of the test problems reported in the

literature. In particular , we have run it on the test problems listed in

[Gill & ~urray , 1976) and on one described in ( Meyer , 1970] . The original

sources for these p~oblcms , together -with the abbreviated problem names used

in Tables II-IV and some notes , are given in Table I.

Table I

Original Sources of Test Problems

Problem Note Source

ROSNB ROK [Rosenbrock , 1960] -

• HELIX l [Fletcher & Powell, 1963)
SINGTJLAR (Powell, 1962) -

WOODS [Colville, 1968]
ZANGWILL 2 (Zangwill , 1967 ] -

ENGVALL [!~ngvall, 1966) - 
- -

BRANIN (Branin, 1971]
BEALE [Beale , 1958]
CRAGG 3 [Gill & Murray , 1976] -

BOX [Box, 1966)
DAVIDON1 (I~vidon , 1976]
FB~~TEIN 5 (Freudenstein & Roth , 1963]
VATSON6,9,12,20 (Kovalik & Osborne, 1968]
CREBQDS (Fletcher , 1965]
BROWN 6 [Brown & Dennis, 1971]
BARD (Bard, 1970]
JENNRICH (Jennrich & Sampson , 1968) -

KOWALIK • [Kova]ik & Osborne, 1968)
OSBORNE1,2 (Osborne, 1972]
)~TER [Meyer, 1970]

Notes on Table I

Note 1: The residual vector R(x) for this problem is a discontinuous
function of x. On those runs where NL2SOL halts with X-convergence, the
Iterates have converged to a point of discontinuity.

Note 2: This is a linear least—square s problem which NL2SOL solves
in one step when the limit V(LMAXO ) on the length of the first step is increased
slightly from its default value.

Note 3: The original ~“iele problem described in f Cragg & Levy, 1969], which
Gill and Murray (1975] cite as the source for this problem , does not have the last
residual component r

5
(x )  = x~ — 1. This new component forces x~ to move more

rapidly towards 1, but otherwise eauscs no noteworthy change in the performance
given by NL2SOL.
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Note 1&: This is another linear least-squares problem , one that is so
ill conditioned that NL2SOL needs two steps to solve it when using double

• precision on an IB!•~ 370 computer with V(U-Ax0) set large. With a double
precision of a few bits more accuracy , such as that of the MULTICS (i.e.
Roneywell) machine or the Univac 1110, a single step suffices (for large

• v(u~Axo) ) .

Note 5: In all our test runs, NL2SOL found a local solution to this
problem. The residual vector vanishes at the global solution.

Note 6: Gill and Murray (1976] call this problem “Davidon 2”.

The behavior of NL2SOL is determined in part by an integer array IV arid

a floating—point array V, which contain iteration and function evaluation li~ it~ ,

• convergence tolerances, and other switches and constants. In the runs summarized

in Tables II—IV, most of the IV and V input components had the default values

given them by subroutine DFATJLT. Exceptions included the following: variabilit;

convergence testing was turned off by setting V( vc0NCR) = 0; and on problem

MEYER, the iteration and function—evaluation limits were increased.

Table II summarizes the performance of NL2SOL on the test problem set

when all IV and. V input components have their default values, with the exceptioris

Just noted. Following a suggestion of J.J. Thré (1979], we obtained new

starting guesses for many of the test problems by- multiplying the standard

starting guess by ten and one hundred. The column labelled LS gives the

base 10 logarithm of the factor by which the standard starting guess was

multiplied. The problem dimensions appear in the columns headed N and P ,

while the number of function (i.e. R(x)) end gradient (i~e. 3(x)) evaluations

performed respectively appear under NF and NG. The column labelled F gives

the final function value (half the sum of squares of R(x)), while the one

labeled COSMAX gives COSMAX(x), computed from (6.i) (with E~~~~~

at the final x. Under C is a code telling why NL2SOL stopped: B means

— 
- -—- -

—-- •-

~

--,

~ 

• -- ~~~~~~ ~~~~~~
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• 

~~~~
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residual convergence, i.e., I IR(x) I 12 < i0~~; C means cosine convergence ,

i.e. COSMAX (x) < lO~~; X means X convergence (see §6) with

v(xcoNca) = ?.22 x 1o~~
3; and F means function evaluation limit reached

without convergence. The results reported in Tables II—IV -were obtained on

the IBM 370/168 computer at the Massachusetts Institute of Technology, arid

the convergence tolerances just mentioned are the defaults for this machirie~

which has a unit roundoff of 16_13 ~ ?.22 x ~~~ in double precision, the

precision used. —

The choice of scale matrices Dk mentioned in §5 can significantly

affect the performance of NL2SOL. By default, Dk 
= diag(d~,...,d~) is

updated by the rule

= ~iax {( II J .,~l I ~ + ma~c{O,S11} ]
½,0.6d~~

1
,1o 3}

at the start of each iteration, beginning with d~
’ = 0, where denotes

• the La?. column of the current Jacobian matrix J(x,~). (The factor 0.6 is

actually V(DFAC). We experimented with several values of V(DFAc), including

zero, 0.5, 0.75, and one, and we felt that o.6 gave the best overall performance

of the values tried.) The advantage of this choice of • is that it is

largely scale—invariant.

A choice of which is not at all scale—invariant, but which gives better

performance on many of our test problems, is Dk 
= I, the identity matrix. Table

III shows how these two choices of D
k compare: results from Table II are repeated

in the columns headed DEFAULT, while results corresponding to = I appear

under DR I . •

-,
~~~~~,

Li ’ 
~~~~~~~~•~~~~~~~~~~~~~~~~~~~~~~~ - • - 1~~~•
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Table III also gives results from two other test runs. Those under
- v(Lt~xo) = lOaclO show what happens when the bound V(LMAXO) - on the 2—norm

of the very first step attempted is increased from its default value of 100

to 1010, while -those under v(ccoNcR) = lOii*—8 show what happens when the

cosine convergence tolerance is decreased from 10~~ to io 8. In both of

these test runs the default Dk was used. -

~~~~~

-

I
. 

- 

. 

- 
-
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J ab l c 11

D cf a u l  t Nl2- *fl. Test Summ~i r’-

PROBLEM LS ~ P NY NC C i- COSMAX

R O SNBROK 0 2 2 15 13 R Q . 9 7 3 E — 3 2  O .999E +O O
ROSNBROK 1 2 2 59 44 R ) . -~J 3 E — 3 2  O.999L +0O
R OSNB RO K 2 2 2 15~ 135 R O . 9 7 3 E — 3 2  O .999E+OO
H E L I X  I) 3 3 15 i i  R f l . 3 2 3 E — 1 8  O. 100E+0 1
H E L I X  1 3 3 12 10 R ( . 2 2 1 E — 2 3  0 .777E+OO
HELIX 2 3 3 125 37 X C-864E+04 O.744E+O0
SINGULA R 0 4 4 18 18 R C . 2 7 3 1 — 1 8  O . 9 6 2 E — 0 4
SINGULA R 1 - + 4 22 22 R ~ . 8 0 6 E — 19  Q. 55 1E— 0 4
SINGULA R 2 4 4 30 26 R 0 . 6 4 9 E — 19  0 .522E—04
WO01)S 0 7 4 56 43 R O . 3 9 0 F — 2 1  O. 707E+O0

1 7 6 64 ~4 B ( . 1 - ’ 3E—24 O.772E+00
WOODS 2 7 4 75 ~ l R ~).52 3l 23 0.721E+O 0
ZAN C;W1LL 0 3 3 3 3 ~ 0.147E—27 O.896E+0O
k~N GVALL 0 5 3 1 r 13 k 0 .12 -~[— 24 0.999E+00
ENCVALL 1 S 3 2 fl 19 8 ~ .52~~•— 22 0.999E+O0
ENGVALL 2 5 3 ~~~ + 28 R 0 . 6 1 7 E — 2 4  0.999E4-0O
BRM~IN 0 2 2 2 2 ~ 0.H2~•— 28 0.945E+00
BRANIN 1 2 2 1 6 15 8 0.100E—27 0.868E+00
BRAN1N 2 2 2 15 12 8 0.’th41— 32 0.868E+00
BEALE 0 3 2 10 9 8 O .5~93i- —2f’ 0.542E+O0
BEAL E 1 3 2 6 6 8 O .i -~8E—21 0.997E+00
CRACG 0 5 4 22 21 R O .289E—18 0.197E+OO
CRAC C 1 5 4 75 43 C O.592Y+02 0.415E—07
BOX 0 10 3 2 1  15 R C .2PRF—3 1 0.958E+00
BOX 1 10 3 19 11 C ().378E—fll 0.385E—11
BOX 2 10 3 23 14 C C ) . 378E_~I1 0.
DAVIDON 1 0 15 15 9 8 C 0.71 r—04 0.910E—07
FRDSTEIN 0 2 2 9 8 C 0. ~~~5FI +~~2 fl.6OCE—0 7
FRDSTE IN 1 2 2 19 12 C 0. 265F+C2 O.254E—08
FRDSTEIN 2 2 2 35 19 C 0. 2651-T462 0.452E—11
WATSONÔ 0 31 6 11 10 C 0.114E—02 0.822E—07
WATS ON9 2 31 9 11 9 C O . 7 D I ~~- — C (  C .114E—O8
WATSON12 0 31 12 13 12 C (.236E—09 Q.902E—08
WATSON2 O 0 31 20 10 10 C (.152E— 14 0.624E—07
CHEBQD8 0 8 8 24 18 C 0.176E—02 0.342E—08
CHEBQD8 1 8 8 85 61 C 0.176E—02 0.586E—07
BROWN 0 20 4 19 16 C 0.429E+05 0.1O1E—07
B’~OWN 1 20 4 22 19 C (‘.429E+05 0.731E—07
BROWN 2 20 4 32 26 C O.429E + 05 0 .856E—0 8

15 3 6 6 C O. 411E—0 2 ().203E—07
BAR D 1 15 3 42 28 C u.  871E+~ 1 Q.858E—07
BARD 2 15 3 21  9 C 0.~~71E+O1 O.615E—07

0 10 2 15 12 C O.~~2_ ~ +02 O .212E—08
K OWALI K 0 11 4 11 10 C O.1 4E—03 0.729E—07

1 11 4 163 90 C O. -14E—0 3 O .712E— 07
K OWAL IK 2 11 4 ~ 1 6 1 C 0 . 1 5 4 E — 0 3  0 .5 6 3 E — 0 7
OSBORNEI 0 33 5 23 19 C ‘. 2  7 3 E — ’~~ 0. 645E—08
OSBORNE2 0 65 1 1 17 1t~ C - .2 Q1F—O 1 O.183E—07
OSBORNF .2 1 65 1 1 28 12 C O.895E+OO O.121E— 07
MADSEN 0 3 2 11 1 1 C Q .~~~7E+QO 0.975E—07
MADSEN 1 3 2 12 12 C (‘ .387F+0O 0.185E—07
MADSEN 2 3 2 23 22 C O.387E+OO 0.195E—07
MEYER 0 16 3 2 2 6  1b7 C i) • ~6flF4fl 2 0 .211E— 10 

~~~~~•• _ _  -- _ _ _ _
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Table III
Some Nondefault Test Runs

V(LMAXO) V(CCONCR)
DEFAULT D — I = 10*~10 — 10**_8

PROBL~4 LS NF NC C NP NG C NF NG C NF NC C NOTE

ROSNBROK 0 15 13 K 20 16 R 15 13 R 15 13 K
ROSNBR OK 1 59 44 R 36 27 R 68 54 K 59 44 K
ROSNBROK 2 156 135 R 54 45 R 178 140 K 156 135 K
HELIX 0 15 13 R 8 8 R 15 13 K 15 13 R
HELIX 1 12 10K 11 9 R  13 11 R 12 10K
HELIX 2 125 37 X 17 14 R 20 16 H 125 37 X

- SINGULAR 0 18 18 R 18 18 R 18 18 K 18 18 R
SINGULAR 1 22 22 K 22 22 R 22 22 R 22 22 K
SINGULAR 2 30 26 R 28 26 K 25 25 R 30 26 K
WOODS 0 56 43 K 56 42 R 56 43 R 56 43 K
WOODS 1 64 44 R 70 46 K 67 50 R 64 44 K
WOODS 2 75 51 K 61 47 K 67 49 R 75 51 K
ZANGWILL 0 3 3 R 3 3 R 2 2 R 3 3 R
ENGVALL 0 16 13 R 16 14 R 16 13 K 16 13 R
ENGVALL 1 20 19 R 20 18 R 20 19 K 20 19 K
ENCVALL 2 34 28 R 28 25 C 33 24 K 34 28 K
BRAN IN 0 2 2 R  2 2R 2 2R 2 2 R
BRANIN 1 16 15 R 17 15 K 16 15 R 16 15K
BRAN IN 2 15 12 K 18 16 K 22 21 R 15 12 K
PEALE 0 10 9 R 10 8 R 10 9 R 10 9 R -

BEALE 1 6 6R 8 8K 6 6R 6 6K
CRAGG 0 22 21 R 21 20 R 22 21 R 22 21 R
CRAGG 1 75 43 C 48 43 K 46 39 C 76 44 C 2
BOX 0 21 1SR 6 6R 6 6K  21 15 R
BOX 1 19 11 C 27 15 C 40 21 C 19 11 C
BOX 2 23 14 C 29 16 C 6 6 C 25 15 C~~
DAVIDON I 0 9 8 C 3 3 K 3 3 R 10 -9 C
FRDSTEIN 0 9 8 C 9 9 C 9 8 C 10 9 C
FRDSTEIN 1 19 12 C 19 14 C 14 13 C 19 12 C -

FRDSTEI N 2 35 19 C 30 22 C 19 17 C 35 19 C
WATSON6 0 11 10 C 8 8 C 11 10 C 12 11 C
WATSON9 0 11 9 C 11 9C 11 9 C  11 9C
WATSONI2 0 13 12 C 13 11 C 13 12 C 13 12 C
WATSON2 O 0 10 10 C 9 9 C 10 10 C 200 96 F 3
CHEBQD8 0 24 18 C 23 17 C 24 18 C 24 18 C
CHEBQD8 1 85 61 C 74 61 C 106 66 C 100 66 X 3
BR OWN 0 19 16 C 15 14 C 19 16 C 22 17 C
BROWN 1 22 19 C 16 16 C 20 18 C 23 *20 C
BROWN 2 32 26 C 26 24 C 25 23 C - 32 26C
BARD 0 6 6C 6 6 C  6 6C 7 7C
BARD 1 42 28 C 47 27 C 33 24 C 54 % C
BARD 2 21 9 C 29 17 C 8 7 C 30 15 C 4
JENNRICH 0 15 12 C 15 12 C 15 12 C 15 12 C
KOWALIK 0 11 10 C 16 12 C 11 10 C 12 11 C
KOWALIK 1 163 90 C 200 72 F 163 90 C 172 96 C
KOWALIK 2 81 61 C 96 67 C 79 62 C 82 62 C
0SBORNE1 0 23 19 C 30 26 C 23 19 C 23 19 C
OSBORNE2 0 17 16 C 17 14 C 17 16 C 18 17 C
OSBORNE2 1 28 12 C 24 13 C 28 12 C 30 13 C
MADSEN 0 11 11 C 11 11 C 11 11 C 12 12 C
MADSEN 1 12 12 C 13 13 C 12 12 C 13 13 C
MADSEN 2 23 22 C 20 19 C 23 22 C 24 23 C
MEYER 0 228 167 C 350 198 F 315 202 C 228 167 C

- ~~~ -- - - — - -  -
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Notes on Table III. • 
-

Note 1: For problen EN GVALL vith 1.8 = ?~ 
a local minimizer x~ having

f(x’) = ~6.i was found in the D = I run.

Note 2: For problem CRACG with LS = 1, a different local minimizer x~,

one having f(x’) = 219, was found in the v(L~AxØ ) = i0**l0 run than in the

DEFAULT run .

Note 3: For problems WATSON2O, C~~BQD8, and BROWN , a cosine convergence

tolerance of appears too tight for the double—precision arithmetic of an

IBM 310 computer. X—convergence did not occur on WATSCN2O because on e of t he

x components hovered about zero. The run with v(ccor~cR)  = lO**_8 achieved

- f (x) 6.146 x on this problem (and had f(x) = 6.53 x ~~
_18 

after 20

function and 16 gradient evaluations),

Note 14: For problem BARD with LS = 2, the D = I run found the solution

obtained in the DEFAULT run with LS = 0.

Table IV summarizes test runs with three variants of NL2SOL, all of which

used the default choice of and the same IV and V inputs as were used for

Table II. The columns headed PURE GN show what happens if the augmented model

is never used, while those headed PURE S show what happens if it is always used

(after the first iteration). Finally , the columns headed NO SIZING give the

results obtained when adaptive modelling is allowed but no sizing is performed.

Ve feel that Table IV makes a good case for the use of adaptive modelling with

sizin g in NL2SOL.

-_-
__

- - -
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Tab le IV
Variations on NL2SOL

DEFAULT PURE GN PUR E S NO SIZING
PROB LEM LS NF NG C NF NC C NF NC C NF NC C NOTE

ROSNBROK 0 15 13 K 20 16 R 24 21 H 20 16 R
ROSNB R OK 1 59 44 K 38 33 R 65 55 R 58 45 K
ROSNBROK 2 156 135 R 113 103 K 200 45 F 122 111 R
HELIX 0 15 13 R 10 1 0 K  22 19 R 10 1 0 K
HELIX 1 12 10 R 12 11 R 25 16 K 13 10 R
HELIX 2 125 37 X 16 14 K 38 23 K 140 39 X
SINGULA R 0 ie 18 R 18 18 R 29 29 K 18 18 K
6INGULAR 1 22 22 K 22 22 R 35 35 K 22 22K
SINGULAR 2 30 26 R 30 26 R 43 42 K 30 26 R
WOODS 0 56 43 R 77 67 K 47 34 R 80 5 0 K
WOODS 1 64 44 R 80 65 R 47 40K 116 67K
WOODS 2 75 51 R 74 55 R 62 47 R 80 58 K
ZANGWILL 0 3 3 R 3 3 R 3 3 R 3 3 R
ENCVALL 0 16 13 R 15 13 K 19 17 R 16 13K
ENGVALL 1 20 19 K 14 14 R 25 22 R 18 17 K
ENC-VALL 2 34 28 K 28 27 R 38 36 K 27 26 K
BRAN IN 0 2 2 R  2 2 K  2 2 K 2 2R
BRANIN 1 16 15 R 16 15 R 24 23K 17 15K
BRANIN 2 15 12 R 15 12 K 38 35 R 15 12 R
B EALE 0 10 9 R 10 9K 19 14 R 10 9 K
PEAL E 1 6 6 R  6 6 R  14 1 3 R  6 6 R
CRAGG 0 22 21 F- 21 20 K 38 35 R 22 21 K
(;RAC.G 1 75 43 c 153 100 C 200 120 C 200 99 F
BOX 0 21 25 H 22 1 6K 46 26 R 19 14K
BOX 1 19 11 C 20 12 C 61 52 R 20 12 C
BOX 2 23 2 4 C 25 16 C 38 24 C 25 16 C
DAVIDO N I 0 9 8 C  9 8 C  9 8 C  9 8 C
FRDSTEIN 0 9 8 C 26 15 C 8 8 C 9 7 C
FRDSTEIN 1 19 12 C 37 22 C 24 18 C 22 14 C
rRDSTEIN 2 35 19 C 46 22 C 44 29 C 38 21 C
CJATSON6 0 11 10 C 13 12 C 15 11 C 12 11 C
WATSON9 0 11 9 C 11 9 C 21 14 C 12 10 C 

~~~
-

WATS ON I 2 0 13 12 C 13 12 C 21 17 C 14 11 C
WATSON2 O 0 10 l O G  10 10 C 16 15 C 10 10 C
CIIEBQD8 0 24 18 C 43 29 C 22 18 C 22 16 C 

~CHEBQD8 1 85 61 C 118 78 C 131 90 C 147 98 C
BROWN 0 19 16 C 128 84 C 19 17 C 24 19 C
BROW N 1 22 19 C 153 89 C 24 23 C 141 78 C
BROW N 2 32 26 C 82 59 C 33 28 C 200 107 F
BARD 0 6 6C  6 6 C  10 l OG 6 6C
B~\RD 1 42 28 C 42 28 C 76 34 C 43 29 C 2
HARD 2 21 9 C 21 9 C 83 26 C 21 9 C 2
. J E N N R I C H  0 15 12 C 22 12 C 13 12 C 15 13 C
C~ WAL IK 0 11 10 C 26 25 C 20 15 C 12 11 C
KOWAL IK 1 163 90 C 108 78 C 200 63 F 99 73 C
t~OWAL IK 2 81 61 C 109 85 C 200 76 F 184 151 I
i sbuRN ~:1 0 23 19 C 17 15 C 34 31 C 17 15 C
)SBOR~-.E2 0 17 16 C 17 15 C 16 15 C 17 16 C

-~~HuR~ E2 1 28 12 C 14 12 C 18 10 C 30 14 C
:-i.\C)S~-1N u 11 Ii C 45 45 C 12 12 C 13 13 C
~.\~ SEN 1 12 12 C 42 42 C 16 16 C 14 14 C
MALJSEN 2 23 22 C 56 55 C 23 23 C 30 26 C
~JY ! ~ 1) 228 1~ 7 C 282 183 C 321 183 C 189 138 C

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Notes on Table IV -

Note 1: Each of the runs listed for problem CRAGG with IS = 1 found

a dirrerent local minimizer x. The DEFAULT run found f(x*) = ~9.2; the

PURE G~ run found f(x*) = 9.98 K 1O~ ; the PURE S run found f(x*) = 14 37;

and the NO SIZIN G run found f(x*) = 1.1.1 x ~~~~~ -

Not e 2: While the other runs of problem BARD found the sane local

minimizer as the corresponding DEFAu LT run , the PURE S runs gave different

results. For 1.5 = 1, the PURE S run foun d f(x~) = 14.11 x 1O~~ (as did

the DEFAULT run with 1.5 = 0), and for 1.5 = ? it found f(x *) = 8.145.

‘ /

_ _ _ _ _ __ _ _ _ _ _  _ _ _ _  -~~~~~~~~~~~~
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1. Purpose

Given a continuously differentiable function (residual vector)

R(x) = (R 1(x)
, R2 (x) , .. . ,  R (x) )T of p parameters x -= (x 1, x2, .. .,  x~)

T
.

NL2SOL attempts to find a parameter vector x~ which minimizes the sum-of-

squares function F (x) =

2. Method

Reference 1 explains the algorithm realized by NL2SOL in detail. The
algorithm amounts to a variation on Newtor.’s method in which part
of the Hessian matrix is computed exactly and part is approximated by a
secant (quasi—Newton) updating method. Once the iterates come sufficiently
close to a (local) solution, they usually converge quite rapidly. To pro-
mote conve—gence from poor starting guesses, NL2SOL uses a model/trust—
region technique along with an adaptive choice of the model Hessian. Cen’-
sequently, the algorithm sometimes reduces to a Gauss—Newton or tevenberg— 

-
Marquardt method. On large—residual problems (in which F(x*) is large),
however , NL2SOL often works much better than these methods . -

3. Calling Sequence -

CALL NL2SOL(N , P, X , CALCR , CALCJ , IV, V , UIPARM , URP ARM , UFPAR}t)
- 

-

~

~-
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Note: In the double—precision version of NL2SOL. all quantities termed
REAL below are actually DOUBLE PRECISION.

N (input INTEGER) is the number of components in the residual vector R.

P (input INTEGER) is the number of parameters on which R depends.

X (1/0 REAL array of length P) on input is an initial guess at the
desired solution x*. When NL2SOL returns after converging or
reaching the iteration limit (I.e., returns with IV(l) = 3, 4, 5,
6, or 8), X contains the best parameter estimate found.

CALCR (input subroutine) computes the residual vector R- R(X) when
invoked by:

CALL CALCR(N, P X, NP, R, UIPARM, URPARN , UFPABN)

When CALCR is called, NF is the Invocation count for CALCR; it is
included for possible use with CALCJ. If X Is out of bounds (e.g.
if R(X) would overflow), then CALCR should set NP to 0, which will
cause a shorter step to be attempted. CALCR should not change N, P,
or X and should be declared EXTERNAL in the calling program. R
should be declared REAL R(N) .

CALCJ (input subroutine) computes the Jacobian matrix 3 = 3(X) of first
• aR

partials, — ~-1(X), when invoked by:
j _ j

- . CALL CALCJ (N, P, X, NP , 3, UIPARI4, URPARM , UFPARM)
When CALCJ is called, NP is the invocation count for CALCR at the

• time when R(X) was evaluated. Except when J is restored after a
covariance matrix has been computed with IV(COVREQ) 1 or 2 (see
§6) , the X passed to CALCJ is the one passed to CALCR. on either
its most recent invocation or the one prior to it. Thus if CALCR

- 
saves intermediate results for use by CALCJ , then it is possible
to tell from NP whether they are valid for the current X (or which
copy is valid if two are kept). If 3 Cannot be computed at X, then
CALCJ should set NP to 0. CALCJ should not change N, P, or X and
should be declared EXTERNAL in the calling program. 3 should be
declared REAL J(N ,P)

IV (I/O INTEGER array of length P + 60) on input contains certain
values (such as limits on the number of iterations and calls on

• CALCR) that control the behavior of NL2SOL and on output contains
various counts and other items of interest: see §~5 and 6. If
IV(l) — 0 on input , then default values are supplied for the input
components of both IV and V. The caller may supply nondefault

• values for selected components of IV and V by CALLing DFAULT (IV , V)
and then assigning the appropriate nondefault values before calling
NL2SOL.

V (I/O REAL array of length 96 + N’(P+3) + P’(7P + 43)12) on input
contains certain values (such as convergence tolerances) that
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control the behavior of NL2SOL ~nd on output contains various items
of interest (such as F(X) and R(X)): see §~ 7 and 17.

UIPARM (INTEGER array of length determined by the caller) is passed without
change to CALCR and CALCJ and nay be used by them in any way that
the caller may find convenient.

URPARM (REAL array of length determined by the caller) , like UIPABN , is
passed without change to CALCR and CALCJ.

UFPARN (subroutine), like UIPARN , is passed without change to CALCR and
CALCJ . If there is no need for such a subroutine , then on many
systems it suffices to pass an arbitrary variable or constant for
UFPARN . But if an actual subroutine is passed, then it must be
declared EXTERNAL in the calling program .

4. Example 2 2xl + x2 + x1
x
2

Let n = 3, p = 2 , and R( x) = sin x
1 

. (This problem is
- 

cos x2 -

due to Madsen , Reference 3.) The following PORT RAN code minimizes

F(x) = ~R( x) TR( x) ,  starting from the initial guess (3, l)~ , using a single—
precision version of NL2SOL.

INTEGER IV(62)
REAL V( 168) , X(2)
EXTERNAL MADR , MADJ
X(l) — 3.0
X(2) = 1.0
IV(1) = 0
CALL NL2SOL(3, 2, X, MADR, MADJ, IV , V , 0, 0 , MADR)
STOP
END
SUBROUTINE NADR (N, P, X, NP , R, UIPARM , URPARM , UFPAR!-O
INTEGER N , P, NF, UIPARM(l)
REAL X(P) ,  R(N ) , URPARM( 1)
EXTERNAL UFPARM
R(l) = X(l)**2 + X(2)**2 + X(1)*X(2)
R(2) = SIN(X(l))
R(3) = COS (X(2))
RETURN
END
SUBROUTINE ~!AD3 (N , P , X , NF , .1, UIPARN, URPAB}1, UFPARM )
INTEGER N, P, NP, UIPA RM(l)
REAL X(P), J(N ,P), URPABN(l)

I” 
- EXTERNAL UFPAR~f

3(1,1) 2.0*X(l) + X(2)
3(1,2) 2.O*X(2) + X(l)
3(2, 1) — COS(X(l))

/
t - 

-

~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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3(2 ,2) — 0.0
3(3,1) = 0.0
3(3, 2) — —SIN(X(2))
RETURN
END

The main program above passes MADR as CALCR and MADJ as CALCJ. Since
no use is nv~de of UIPARN , URPARM , or UFPARN , zeroes are passed for IJ1PARM
and URPARN i- nd NADR is passed for UFPARN .

When the above is executed, NL2SOL prints the initial X vector, a
summary of the iterations performed , the fina l X vector , and some statistics
(including the final F(X) and a covariance matrix) . If REAL is changed to
DOUBLE PRECISION and the above is run on an IBM 370 computer, then NL2SOL.
reports variability convergence (1V(l) = 6 —— see §5) after 7 calls on
CALCR and CAICJ and returns X(l) — —0.156234, X(2) — 0.698698, andF(X) — 0.386616

In this example , it is possible to obtain a slightly smaller value
of F(X) by decreasing the variability convergence tolerance from its default

value of lcf4. If the statement IV(l) = 0 in the main program is replaced by
CALL DFAULT(IV , V) -

V(42) — 0.0

then variability convergence testing is turned off. When this modified
• version of the example is run on an IBM 370 wIth REAL changed to DOUBLE

PRECISION , NL2SOL reports cosine convergence (IV(l) = 4) after 11 calls
on CALCR and CALCJ and returns X (1) —0.155437, X(2) = 0.694564, and
F(X) — 0.386600

5. Return Codes

When NL2SOL returns , IV(l) contains one of the following return codes:

3 X convergence: see V (XCONCR) in §7.
-4 cosine convergence: see V(CCONCR) in §7.
5 — residua l convergence: see V(RCONCR) in §7.
6 • variability convergence: see V (VCONCR) in §7.
7 function evaluation limit reached: see IV(MXFCAL) in §6.
8 iteration limit reached: see IV(!’DCITER) in §6.
9 • STOPX returned .TRUE. (external interupt): see §16.
11 • F(X) overflows at the initial X.
12 — bad parameters passed to ASSESS (which should not occur).
13 • 3(X) could not be computed (i.e., CALCJ set NF to 0).
14 • one of the Inequalities NN ~ N ~ P ~ 1 is violated . (NM is

only of interest to those who exercise the reverse communication
option — see §15.)

15 — NL2SOL was restarted (see §9) with NN , N , or P changed.
16 a IV(INITS) is out of range : see §6.
17 IV(1) was out of range (i.e., was negative or greater than 10)

when NL2SOL was called .
18 or more — V(IV(1)) is out of range : see §~7 and 17.

Just before NL2SOL returns , a brief description of the return code

-

~~ 

~~
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is printed (unless all printing is turned off by 1V(PRUNIT) = 0) .

6. 1V Values

IV Input Values (Supplicd b~ DFAULT)

IV(1) IV(l) should have a value between 0 and 10 when NL2SOL is
called. 0 and 10 both mean tha t this is a fresh start; 0
means DFAULT(IV , V) should be invoked to supply default values
to the input components of IV and V. while 10 means that the
caller has already supplied these values. IV(1) input values
between 3 and 9 mean that NL2SOL should restart: see §9.

- Default = 10.

IV(COVPRT)... IV(14) = 1 means print a covariance matrix at the solution.
This matrix is computed as IV(COVREQ) dictates just before a
return with IV(l) = 3, 4, 5, or 6. IV(COVPRT) = 0 means do not
print a covariance matrix. Default = 1.

IV(COVREQ)... IV(15) # 0 means compute a covariance matrix just before a
return with IV(l) = 3, 4, 5, or 6. In this case, an approxi-
mate covariance matrix is obtained in one of several ways.
Let k — IIV (COVREQ)I and let a = 2F(X)/max{1,N—P}, where
2F(X) is the residual sum of squares. If k = 1 or 2, then
a finite-difference Hessian approximation H is obtained. If
B is positive—definite (or, for k — 3, if the Jacobian matrix
3 3(X) is nonsingular), then one of the following is computed:

k — 1 ~~~> o.H l
(JTJ)H l

k’.2=> o•B 1 -

k 3 => a~(JTJ) 1

If IV(COVREQ) > 0, then both function and gradient values (calls
on CALCR and CALCJ) are used in computing H (with step sizes
determined by V (DELTAO) —— see §7), while if IV(COVREQ) < 0,
then only function values (calls on CALCR) are used (with step
sizes determined by V(DLTFDC)). If IV(COVREQ) 0, then no
attempt is made to compute a covariance matrix (unless
IV(COVPRT) a j, in which case NL2SOL assumes IV (COVREQ) = 1
and NL2SNO assumes IV(COVREQ) —1). Default = 1.

IV(INIrS).... 117(16) tells how the S matrix of Ref. 1 should be initialized:
0 means set S to 0 and start with the Gauss—Newton model; 1 and
2 mean that the caller has supplied the initial S, storing its
lower triangle row—wise in V starting at V(P + 87); IV(INITS) = 1
means start with the Gauss—Newton model, while IV(INITS) = 2
means start with the augmented model. Default • 0.

IV(MxPCAL)... IV(17) gives the maximum number of function evaluations (calls
on CALCR, excluding those used to compute the covariance matrix)
allowed. If this number does not suffice, then NL2SOL returns
with IV(l) — 7. Default — 200.

IV()~CITER)... IV(18) gives the maximum number of iterations allowed. It also
indirectly limits the number of gradient evaluations (calls on

L~~~~~~~~. _  _ _ _ _  _ _
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CALCJ, excluding those used to compute the covariance matr ix)
to IV(i’tXITER) + 1. If IV(MXITER) iterations do not suffice ,
then NL2SOL returns with IV(1) = 8. Default = 150.

IV(OUTLEV)... 117(19) controls the number and length of iteration summary
• lines printed. IV(OUTLEV) = 0 means do not print any summary

lines. Otherwise, print a summary line after each ~IV(OUTLEV)!
iterations. Long summary lines are printed if IV (OUTLEV) > 0,
short lines if IV(OUTLEV) < 0. See §13 for more details.
Default = 1.

IV(PARPRT)... IV(20) = 1 means print any nondefault V values on a fresh
start or any changed V (input) values on a restart.
IV(PARPRT) = 0 means skip this printing. Default = 1.

IV(PRUNIT)... IV(2l) is the output unit number on which all printing is
done. IV(PRUNIT) = 0 means suppress all printing. (Setting
IV(PRUNIT) to 0 is the only way to suppress the one—line
termination message printed before NL2SOL returns.)
Default = standard output unit (unit 6 on most systems); the
default for IV (PRTJNIT) is actually IMDCON(l): see §14.

IV(SOLPRT)... IV(22) = 1 means print the X returned (along with the
• corresponding gradient and scale vector D). IV(SOLPRT) = 0

means skip this printing. Default a 1.

IV(STATPR)... IV(23) = 1 means print summa ry statistics upon returning.
.These consist of the function value (half the residual sum of
squares) at X, the variability of the last step (see V (VCONCR)
in §7) , the number of function and grad ient eva luations (calls
on CALCR and CALCJ respectively, excluding any calls used i~
computing the covariance), the 2—norm of the gradient at X,
the corresponding V(COSNAX ) (see V(CC ONC R)) , and the number of
calls (if positive) on CALCR and CALCJ used in trying to compute
covariance matrices. IV(STATPR) = 0 means skip this printing.
Default = 1.

IV(XOPRT).... IV(24) — 1 means print the initial X and scale vector D if
this is a fresh start. IV(XOPRT) a 0 means skip this printing .
Default = 1.

IV Output Values of Primary Interest -

IV(1). ...... IV(1) is the return code: see §5.

IV(COVMAT)... IV(26) tells whether a covariance matrix was computed. If
IV (COVMAT ) is positive, then the lower triangle of the covari—
ance matrix is stored row—wise in V starting at V(IV(COVNAT)).
If IV(COV’MAT) • 0, then no attempt was made to compute a co—
variance matrix. If IV(COVNAT) — —1, then the finite—difference
Hessian H was indefinite (or, for IIV(COVREQ) I — 3, the current
Jacobian matrix is singular; see IV(COVREQ) above). And if
IV(COVMAT) — —2, then a successful finite—difference step could
not be found for some component of X (i.e., CALCR set NF to 0
for each of two trial steps). Note that IV(COVMAT) is reset to
0 after each successful iteration , so tha t if a lower function

-
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value is found after a restart , then a new attempt will be
made to cor~pute a covariance matrix.

IV(D) IV(27) is the starting subscript in V of the current scale
vector D (see V(D0) in §7).

117(G) IV(25) is the starting subscript in V of the current gradient

vector g = J (X)TR(X) .

IV(NFCALL)... IV(6) is the number of calls so far made on CALCR (i.e.,
the number of function evaluations, including those used in
computing covariance matrices). 

-

IV(NFCOV).... 117(40) is the number of calls made on CALCR when computing
covariance matrices. -

IV(NGCALL)... IV(43) is the number of calls so far made on CALCJ (i.e.,
the number of gradient evaluations, including those used in
computing covariance matrices).

IV(NGCOV).... IV(4l) is the number of calls made on CALCJ when computing
covariance matrices.

IV(NITER).... IV(44) is the number of iterations performed.

IV(R) IV(5O) is the starting subscript in V of the residual
vector R(X).

7. V Values of Primary Interest

Many of the V input components described here and in §17 must lie
within a certain range of values. If such a component falls outside the
range indicated below (and in §17) at the beginning of its description,
then module PARCHK will print an error message (unless IV (PRUNIT) = 0)
and will force NL2SOL to return immediately with IV(l) ~ 18. . -

Frequent reference is mad e below to two quantities: MACHEP and the
scale vector D. MACHEP is the unit roundoff for the floating point arith-
metic being used —— see §14. The scale vector D is the diagonal of the
(diagonal) scale matrix D

k 
discussed in §~ 5 and 7 of [1]; this scale

matrix is denoted by diag(D) below.

V Input Values of Primary Interest (Supplied by DFAULT)

V(CCONCR)... V(29) c [0, 1] is the cosine convergence tolerance. Let

denote the i-~~ column of the nxp  Jacobian matrix J and let

IRTJ I
cosmax(R,J) = naxf 

UR II ’II J~T 
: IIJjII

~ 
> JTOL(i), 1 ~ i ~ p1,

where JTOL is described with V(JTINIT) below. If NL2SOL finds
an X giving cosmax(R(X),J(X)) ~ V(CCO~ICR), then it returns

with IV(l) = 4. Default = max( 10 7 , l000’MACHEP}.

V(DE~TAC). . V(31) c [MACHEP, 1] helps pick the finite—difference steps

L L -~~ _ _ _ _
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used in computing H when IV(COVREQ) 1 or 2. The step used
for component X(i) is

V(DELTAO) • max{IX (i)I, 11D(i)} ‘ sign(X(i)),
where D is the current scale vector. (If this step results
in CALCR setting NF to 0, then —0.5 times this step is also

tried. Default = NACHEP
V(DFAC) V(32) c [0, 1] and V(D0) are used in updating the scale vector

D —— see V(D0) below. Default = 0.6. -
V(DINIT).... V(33), if nonnegative, is the value to which all componen ts

of the scale vector D are initialized. Default = 0.

V (DLTFDC).. .  V(34) c [NACHEP , 1] helps pick the step sizes used in com-
pu ting H when IV(COVREQ) = —l or —2. For differences involv-
ing X(i), the step first tried is

V(DLTFDC) . max{IX(i)I, l/D(i)}.
(If this step is too large, i.e., if CALCR sets NF to 0 when
this step is first tried, then —0.5 times this step is also

tried.) Default = MACHEP~~’~~.

V(DLTFDJ)... V(35) c [MACREP , 1] helps pick the step sizes that NL2SNO
uses when computing its finite—difference approximation to
the Jacobian matrix (see §8). For differences involving X(i),
the step first tried is V (DLTFDJ) maxflX(i)I, l/D(ifl-.
(If this step is too large, i.e., if CALCR sets NP to 0,
then smaller steps are tried until the step size is shrunk
below lOOO~NACHEP.

) Default = MACHEP~~
’2).

V(DO) V(36) and V (DFAC) are used in updating the scale vector D.
If V(D0) > 0, then at the start of each iteration, D(i) is
set to -

maxf[11J1112 
+ max{S~~~0)]’ 

2, V(DFAC)~D(i), JTOL(i), V(D0)},

where is the i— column of the current Jacobian matrix,

S is the S matrix of [1], and JTOL is the array described with
V(JTINIT) below . If —l < V(D0) < 0, then D is set to the above
values (after any initialization due to V(DINIT)) on the first
iteration and is not changed again. If V(D0) • 0, then all
components of D are set to 1 (regardless of V(D INI T)) ,  wh ich -

usually gives good performance on well—scaled problems. If
V(D0)~~—l, then it is assumed that the caller has chosen D and
has stored it in V, starting at 17(96 + 2N + P[7P + 411/2).

• Default =

• V (JTINIT)... V(38) ~ 0. For 1 ~ i ~ P, JTOL(i) is a tolerance used todecide whether the i—th column of the Jacobian matrix should
be considered to be zero. If V(JTINIT) > 0, then all components
of the JTOI. array are set to V(JTINIT), and if V (JTINIT) = 0,
then it is assumed that the caller has stored JTOL in V start—

ing at 17(87). Default — l0~~,

V(LMAXO).... 17(39) > 0 gives the maximum 2—norm allowed for the very first

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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step that NL2SOL attempts. On problems where this step would
otherwise be inordina te ly  large , it is very useful  to assign
a modest value to V(L’IAXO). Default  = 100.

V(RCONCR)... V(40) > 0 is the residual convergence tolerance. If
IIR (x)~1 ~ V(RCONCR), then NL2SOL returns with IV(l) 

= 5.
2 

-Default = 10

V(VCONCR). .. V(42) ~ 0 is the variability convergence tolerance. If H
is the current Hessian approximation , then the variability
of the current step ~x is

V(VARIAB) = maxtl,N—P) • ~~Tjj~ 
~ (2F(X)),

where 2F(X) is the current residual sum of squares. If
V(VARIAB) ~ V(VC ONCR) , then NL2S OL re turns with IV(l) = 6.

Default = lO~~.

V(XCONCR)... V(28) ~ 0 is the X convergence tolerance. If a step ~x is
tried that yields a much smaller f unc tion decrease than
expected, and if V (RELDX) ~ V(XC ONCR) , where V(RELDX) is
the maximum relative change in any component of X [which,
for X X + tax, is computed as

IX(i) — X (i) I
V(RELDX) = max{

IX(i)I + 1X0(’)I 
: 1 ~ i ~ P)~j,

then NL2SOL returns with IV(l) = 3. Default = 1000 NACHEP.

! Outnut Values of Primary Interest

V(COSMAX)... V(43) = cosuiax(R(X), 3(X)) —— see V(CCONCR) above.
V(DCNORN)... V(l) a ~diag(D)J(x) TR(x)~~~, where D is the current scale

vector and 3(X) R(X) • VF(X).

V(DSTNRM)... V(2) = Ildiag(D)~x~ , where ~x is the most recently tried
step. 2

V(F) V(l0) — F(X) IIR(X)ll~~ / 2.

V(RELDX)...~ 17(17) is the maximum relative change in X caused by the most
recent step —— see V (XCONCR) above.

V(VARIAB)... V(50) is the variability of the most recent step —— see
V(VCONCR) above.

8. Finite—Difference Jacobians —— NL2SNO

Those who do not wish to code a subroutine CALCJ for (analytically)
computing the Jacobian matrix may avoid doing so by calling NL2SSO instead
of NL2SOL. NL2SNO computes an approximate Jacobian matrix by forward
differences (using a step size determined by V(DLTFDJ) —— see §7) . The
calling sequence for NL2SNO amounts to the one for NL2S OL with CALCJ omit ted:

CALL NL2SN O (N , P , X , CALCR , IV , V UIPARN, URPARM , UFPARN )

_  _ _
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The para meters for NL2SN O are the same as the corresponding ones
for KL2SOT.. One minor exception occurs with the handling of IV (COVREQ):
if IV (COVPRT) = 1 and IV(COVREQ) = 0, then NL2SNO sets IV(COVREQ) = —1;
otherwise NL2SNO sets IV(COVREQ) to —IIV(COVREQ)I. Thus NL2SNO uses
funct ion values only in computing covar iance matrices and V(DELTA O) is
not used.

9. Restarting

After any return with 3 ~ IV(l) ~ 9, it is possible to change some
of the IV and V input components (such as the convergence tolerances and
the iteration and function evaluation limits) and call NL2SOL (or NL2SNO)
again with IV(l) unchanged. This causes the algorithm to be resumed at
the point where it was interrupted . (It is even possible to save IV, V ,
and X and then restart in a subsequent run.)

10. Scaling

Problems sometimes arise which are poorly scaled in the sense that
the various components of X are expressed in widely differing units . ~Jith
the default choice of the scale matrix D (see V(D0) and the beginning of
§7), the behavior of NL2SOL is largely insensitive to this kind of poor
scaling. On well scaled problems , its performance can often be improved
by choosing D to be the identity matrix (i.e., setting V(D0) = 0). Some-
times it may. also be worthwhile to fix D(i), 1 ~ i ~ P, at the 2—norm
of the i—th column of the initial Jacobian matrix (by setting V(L.O) = —0.5).

11. - LMAXO: Limiting the First Step Length

On some problems it is necessary to give V(LMAXO) = V(39) a’ small
value to prevent a disasterously large first step, one which might lead
to exponent overflow or arguments out of range to intrinsic functions.
Even if no disaster occurs, if NL2SOL takes many function evaluations on
the first step , then performance might be improved by a much smaller (or
in some cases larger) value of V(LNAXO) .

Note that if L~x is the very first step attempted , then ~J Ax1I rather

than ~diag(DThx~ is bounded above by V (LMAXO), because it was felt that
the caller might have a better idea of how II~ ll2 should be limited. As a

result, V (LMAXO) is a scale—sensitive quantity .

12. Local Solutions

• It can easily happen that NL2SOL only finds a local minimizer of the
sum—of—squares function F(X) and that a different starting guess would
cause a point to be found at which F has a still smaller value. Except
for cases where special conditions (such as convexity of the objective
function) prevail, this shortcoming is shared by all minimization algorithms .

13. Printed Output

Any printing is done by one of two modules: ITSMRY and PARCHK .

--
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PARCIIK reports any V input components that arc out of range and optionally
lists any such cor~poneuts that have nondefault or changed values (on a
fresh start or restart respectively). ITS~RY does the remaining printing.
Various IV input  cor.~po nents  control  ~-‘h at p r i n t i n g  is done —— see §6.

If IV(OUTLEV) > 0, then 1TS~rRY produces an iteration summary which
includes the following values: IT, the current iteration number; NF , the
number of funttion evali’atious (calls on CALCR), excluding any extra ones
needed for computing covarjance matrices and , in the case of NL2SNO ,
excluding the extra ones needed to compute finite—difference Jacobian
matrices ; F, the current function value (half the residual sum of squares);
DF , the difference between the previous and current function values; COSMAX ,
the current cosmax (R(X), J(X)) —— see V(CCONCR) in §7; VAR , the current
step variability —— see V (VCONCR) in §7; MODEL, which tells which models
were used in computing the current step (C = the Gauss—Newton model;
S the augmented model; C—S means the Gauss—Newton model was tried f i r s t
and a switch was then made to the augmented model; S—C , G—S—G , and S—G—S
have analogous meanings]; LA~-LBDA, the current Levenberg—Narquardt param-
eter A (which is nonnegative if the step Ax just taken satisfies

(H + A~diag(D)
2
]A x = —VF (X— Ax), where is the current Hessian approxi-

mation , and is negative if the special case discussed in [23 was detected);
RELDX , the current value of V(RELDX) —— see V(XCONCR) in §7; C, the current
value of ~17F(x)II = ~J(X) TR( X)~ ; SIZ E, the sizing factor just used in

updating the S matrix (see [1]); and D*STEP , the current value of V (DSTNRN)
—— see §7. These summary lines are 118 characters  long ( including the
carriage control character). If IV (OUTLEV) < 0, then lines of maximum
length 69 (or 56 if IV(COVPRT) = 0) are generated , and the iteration
summary includes onl y the f i r s t  six items described above (i .e. ,  IT , NF,F,
DF , COSMAX , and VAR).

14. Changing Computers

The NL2SOL d i s t r ibu t ion  tape contains both single— and double—precision
versions of the NL2SOL source code , so it should be unnecessary to change
precisions . (On computers having only 32 or 36 bits per REAL word, double
precision often gives better performance.)

Onl y the functions IMDCON and RNDCON contain machine—dependent constants.
To change from one computer to another , it should suffice to change the
DATA statements in these functions . The DATA statement in II~~CON sets
MDCO N (l) to the o ut p u t  uni t  number that  DFAULT supplies to IV (PRUNIT) .
The machine—dependent DATA statement in R~~CON provides three values: BIG,
ETA , and MACHE?. BIG is the largest floating—point number such that a
FORTRAN program can compute SQRT(O.999*BIC)**2 [i.e., DSQRT(O.999D0*BIG)**2
in DOUBLE PRECISION ] w i thout  overflowing . Similarly , ETA is the smallest
f l oa t i ng - -po in t  number such tha t  SQRT(l.O Ol *ETA) **2 [or DSQRT(l.OO 1DO*ETA ) **2
r e s p e c t i v e l y ]  does not und er f i ow . MACHEP is the unit roundoff , i.e., the
smallest floatin~-~ oint number such that 1 + MACHE? yields a stored floating
point nur-.~ cr c~rca~~’r than 1 and 1 — MACHEP yields a stored number less than
1. (So~.— ~or;ur~ ~s fc-~ rure re~ istcrs tha t carry more bits than can be stored;
‘AC ~P should on ly  r e f l e c t  the accuracy  of numbers that can be stored.)

~

_

~

— 
_ _  _



-38-

The tcst program supplied on the NL2SOL distribution tape places the
further restriction on BIG and ETA that EXP(l.999*ALOG(SQRT(O.999*BIG)))
and EXP(l.999*ALOC(SQRT(l.OOl*ETA))) (DEXP(l.999DC~*DLOG(DSQRT(O.999DO*BIG)))• and DEXP( l. 999D 0 *DLOG(D SQRT (l .oOlD O*E TA))) in DOUBLE PRECISION ] not overflow
or underf low. DATA statements giving suitable values for BIG, ETA , and
MACREP for a variety of computers appear as comments in RMDCON.

Intrinsic functions are explicitly declared in the NL2SOL source code.
On certain computers (e.g. Univac), it may be necessary to comment out
these declarations. So tha t this may be done automatically by a simple
program , such declarations are preceded by a comment having C/+ in columns
1—3 and blanks in columns 4—72 and are followed by a comment having Cl
in columns 1. and 2 and blanks in columns 3—72.

15. Using Reverse Communication —— NL2ITR

Instead of writing subroutines CALCR and CALCJ to compute the residual
vector R(X) and Jacobian matrix 3(X), one can call NL2ITR and provide R and
3 by reverse communication. The calling sequence is:

CALL NL2ITR(D, IV , 3, N, NN , P, R, V, X)
Parameters IV , N, P, V, and X are the same as the corresponding parameters
to NL2SOL , with the following exceptions: V need only contain
-96 + 2N + P[7P ÷ 413/2 elements, since the stora ge tha t NL2SOL and NL2SNO
allocate for D, 3, and R at the end of V is not needed; and components
IV(D) , IV(J) , and IV(R) are not referenced. D is the scale vector (dimen—
sioned D(P)). NN is the (integer) lead dimension for the 3 array, which
is dimensioned J (NN ,P);  KN must satisfy NN ~ N.When NL2ITR is f i rs t  called (with IV(1) 0 or 10) , 3 must have been
set to 3(X), R to R(X). When NL2ITR wants R to be evaluated at a new X,
it returns with IV(1) = 1; the caller should then set R to R(X) (unless
X is out of range, in which case the caller should set IV(TOOBIG) , i.e.,
IV(2), to 1) and call NL2ITR again. Similarly, when NL2ITR wants 3 to
be evaluated at X, it returns with IV(l) = 2, and the caller should then
set J to 3(X) and call ~L2ITR again. (If 3 cannot be evaluated at X, the -‘
caller may set IV(NFGCAL) , i.e., IV(7), to 0; this will cause NL2ITR to
give the error return IV(l) 13.)

16. STOPX

It is possible to arrange for NL2SOL (NL2SNO and NL2ITR) to be inter-
rupted when used in an interactive environment. To do this, it is necessary
to replace the logical function STOPX supplied with the NL2SOL package

• (which always returns .FALSE.) by a system—dependent STOPX that returns
.TRUE. if and only if the “breakt’ (i.e., “interrup t”) key has been pressed
Since the last call on STOPX. Once this is done, NL2SOL will return with
IV(l) 9 when the “break” key is pressed before some other return has
occurred. It is then possible to change some of the IV and V input com-
ponents and restart —— see §9. -

17. Other V Input Values
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V(COSMIN)... V (30) c (M.;CIIEP, 1) is the minimum absolute cosine allowed
between the step just taken , Ax , and the corresponding change
in gradients, t~g, for a full update of the S matrix to be

performed. If I&
T
~~ f/(II~ ,JI t~Ag~I2 ) < V(COs :41N) , then AxT

~g

is replaced in the update forTaula by

sign(Ax T
~g) V (COSMIN) 1 1 j 2 jj gjj 2

Default = xnax{l0 6, loO ’MAcHEP }.

V(DECFAC)... V(21) c (0 01, 0.8] is the factor by which the radius of the
trust region is shrunk if CALCR sets NF to 0 (or NL2ITR is
called with IV(l) = 1 and IV (TOOBIG) = 1). Default = 0.5.

V(EPSLON)... V(l8) c [0.001, 0.9] is the maximum relative difference al-

lowed beti~een VF (x)T~x + ~~X
T
1~~X and its optimal value

(subject to the constraint ~diag(D)àx~~~ V(RP.DIUS)), where

~x is the step being computed and ~ is the current Hessian
approximation. This is used in detecting and handling the
special case discussed in [2). Default = 0.1.

V(Fuzz). ... V(37) e [1.01 , 100] is used in the test that decides whether
to switch models. If q is the current model for F (near

-the point x) and is the other model, and if

V(FuzZ).J~~(X + Liz) — F(X + Lix)J < q1x + Liz) - FIX + óx)J,
then the models are switched. Default = 1.41421.

v(1~cFAc)... v(22) c [1.2, 1001 is the factor by which the radius of the
trust region is increased if module ASSESS deems this worth—

• while (or the gradient tests performed in NL2ITR indicate
that this should be done). Default = 2.0.

V(Pur~Pc)... V(l9) £ (—0.99 , —0.001] is the minimum value allowed for
(~diag(D)Lix(~— V (RADIUS)]fv(RADIUS). Default = —0.1.

V(PHMXFC)... v(20) c [1.2, 100] is the maxit~um value allowed for
t~Idiag (D)~ x~ — V (RADIUS)]/V(RADIUS). Default 0.1.

V(RDFC1.2~)... V(23) £ [0.01 , 0.8] is the minimum factor by which the trust
region radius V(RADIrJs) may be shrunk. Default 0.1.

V(~LIMIT)... V (41) c [1010, RIG] is the largest value allowed for IIR(X)H
before FIX) is considered to overflow. Default = v’O.999 BIG,
where BIG is described in §14.

V(TUNER 1)... V(24) £ (0, 0.53. If the actual function reduction is no
more than V(TUNE~l) times its predicted value, then module
ASSESS will consider switching models or decreasing the trust
region radius. Default — 0.1.

V(TUNER2)... V(25) ~ 1. If the actual function reduction is at least
V(TUrJER2 ) times its predicted value, then ASSESS decides to
increase the trust region radius. Default = 10.
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V(’rUNER3)... v(26) £ (0.001 , 1]. If F(X 4- Lix ) — F (X) ~ V (TtJNER3).Ax
TVF(X),

then ASSESS decides to increase the trust region radius.
Default = 0.75.

V(TUNER4)... V (2 7) c (0, 1]. If ASSESS accepts the step Lix without other-
wise deciding to increase or decrease the trust region radius,
and if either

~J V F ( x +  Lix) — VF(x) — < V (TUNER4).II VF(X+LiX )ll

or LiXTVF(x+ Ax) < V(TUN E R3 ) Ax
T
v~ (x) then the radius is

increased. Default = 0.5.

18. Storage Requirements

The NL2SOL package (excluding test program) amounts to about 5000
lines of FORTRAN source code, which includes about 1900 executable state-
ments and around 40 FORMAT statements. When compiled on an IBM 370 by
the H—extended compiler with OPT(2), this source code results in a little
under 54000 bytes of object code. The amount of variable storage used is
listed above in §3.
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abstract (continued)

assessing the quality of the step thus computed. These and other ideas behind
NL2SOL are discussed and its evolution and current implementation are also
described briefly .
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